顶部右侧
顶部左侧
当前位置:首页 > 高中数学 > 正文

高中数学不等式公式,高中数学不等式公式总结

bsmseo 发布于2025-06-05 14:00:30 高中数学 31 次

大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学不等式公式的问题,于是小编就整理了4个相关介绍高中数学不等式公式的解答,让我们一起看看吧。

  1. 高中数学基本不等式公式?
  2. 高中数学不等式公式总结,要很全的,最好有例题谢谢?
  3. 不等式推理公式?
  4. 4个基本不等式的公式及推导?

高中数学基本不等式公式?

高中数学基本不等式

高中数学不等式公式,高中数学不等式公式总结
(图片来源网络,侵删)

 是如下:

1、基本不等式:

高中数学不等式公式,高中数学不等式公式总结
(图片来源网络,侵删)

√(ab)≤(a+b)/2,那么可以变为 a^2-2ab+b^2 ≥ 0,a^2+b^2 ≥ 2ab,ab≤a与b的平均数

 的平方。

高中数学不等式公式,高中数学不等式公式总结
(图片来源网络,侵删)

2、绝对值不等式

 公式:

| |a|-|b| |≤|a-b|≤|a|+|b|。

| |a|-|b| |≤|a+b|≤|a|+|b|。

3、柯西不等式:

设a1,a2,…an,b1,b2…bn均是实数,则有(a1b1+a2b2+…+anbn)^2≤(a1^2+a2^2+…an^2)*(b1^2+b2^2+…bn^2) 当且仅当ai=λbi(λ为常数,i=1,2.3,…n)时取等号

4、三角不等式

对于任意两个向量b其加强的不等式,这个不等式也可称为向量的三角不等式。

5、四边形不等式

如果对于任意的a1≤a2<b1≤b2,有m[a1,b1]+m[a2,b2]≤m[a1,b2]+m[a2,b1],那么m[i,j]满足四边形不等式。

基本性质

①如果x>y,那么y<x;如果y<x,那么x>y(对称性)。

②如果x>y,y>z;那么x>z(传递性)。

③如果x>y,而z为任意实数或整式

 ,那么x+z>y+z(加法原则,或叫同向不等式可加性)。

④ 如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz<yz(乘法原则)。

⑤如果x>y,m>n,那么x+m>y+n(充分不必要条件

 )。

高中数学不等式公式总结,要很全的,最好有例题谢谢?

4.公式:

3.解不等式

(1)一元一次不等式

(2)一元二次不等式:

判别式

△=b2- 4ac

△>0

△=0

y=ax2+bx+c

的图象

(a>0)

ax2+bx+c=0

(a>0)的根

有两相异实根

x1, x2 (x1

不等式推理公式?

基本不等式中常用公式

(1)√((a²+b²)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(当且仅当a=b时,等号成立)

(2)√(ab)≤(a+b)/2。(当且仅当a=b时,等号成立)

(3)a²+b²≥2ab。(当且仅当a=b时,等号成立)

(4)ab≤(a+b)²/4。(当且仅当a=b时,等号成立)

(5)||a|-|b| |≤|a+b|≤|a|+|b|。(当且仅当a=b时,等号成立)

4个基本不等式的公式及推导?

基本不等式公式四个推导过程:

1、如果a、b都为实数,那么a^2+b^2≥2ab,当且仅当a=b时等号成立 。

2、如果a、b、c都是正数,那么a+b+c≥3*3√abc,当且仅当a=b=c时等号成立 。

3、如果a、b都是正数,那么(a+b)/2 ≥√ab ,当且仅当a=b时等号成立。(这个不等式也可理解为两个正数的算数平均数大于或等于它们的几何平均数,当且仅当a=b时等号成立。

1.a + b > a,推导:

左边a + b,可以分解为a + (b - b),由于加法法则可以知道a + b > a。

2.a - b < a,推导:

左边a - b,可以分解为a - (b + b),由于减法法则可以知道a - b < a。

3.a × b > a,推导:

左边a × b,可以分解为a × (b - 1 + 1),由于乘法法则可以知道a × b > a。

4.a ÷ b < a,推导:

左边a ÷ b,可以分解为a ÷ (b + 1 - 1),由于除法法则可以知道a ÷ b < a。

到此,以上就是小编对于高中数学不等式公式的问题就介绍到这了,希望介绍关于高中数学不等式公式的4点解答对大家有用。

查看更多有关于 的文章。

转载请注明出处:http://www.tivgjtz.cn/post/136243.html

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。
最新文章
热门文章
最近发表
友情链接