顶部右侧
顶部左侧
当前位置:首页 > 高中数学 > 正文

高中数学必修一第6节,高中数学必修一第6节知识点

bsmseo 发布于2024-09-11 11:23:21 高中数学 213 次

大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修一第6节的问题,于是小编就整理了3个相关介绍高中数学必修一第6节的解答,让我们一起看看吧。

  1. 高一数学必修一基本不等式公式?
  2. 人教a版数学必修1需要几课时?
  3. 必修一三角函数所有公式?

高一数学必修一基本不等式公式?

高中数学基本不等式常用的有六个,在以后学习的过程中还要积累一些常见的不等式。

高中数学必修一第6节,高中数学必修一第6节知识点
(图片来源网络,侵删)

1.基本不等式a^2+b^2≧2ab

对于任意的实数a,b都成立,当且仅当a=b时,等号成立。

高中数学必修一第6节,高中数学必修一第6节知识点
(图片来源网络,侵删)

证明的过程:因为(a-b)^2≧0,展开的a^2+b^2-2ab≧0,将2ab右移就得到了公式a^2+b^2≧2ab。

它的几何意义就是一个正方形的面积大于等于这个正方形内四个全等的直角三角形的面积和。

高中数学必修一第6节,高中数学必修一第6节知识点
(图片来源网络,侵删)

2.基本不等式√ab≦(a+b)/2

这个不等式需要a,b均大于0,等式才成立,当且仅当a=b时等号成立。

证明过程:要证(a+b)/2≧√ab,只需要证a+b≧2√ab,只需证(√a-√b)^2≧0,显然(√a-√b)^2≧0是成立的。

它的几何意义是圆内的直径大于被弦截后得到直径的两部分的乘积的二倍。

3.b/a+a/b≧2

这个不等式的要求ab>0,当且仅当a=b时等号成立,也就是说a,b可以同时为正数,也可以同时为负数。

证明的过程:b/a+a/b(a^2+b^2)/ab≧2,只需证a^2+b^2≧2ab即可。

4.基本不等式的拓展公式:a^3+b^3+c^3≧3abc,a,b,c均为正数。

5.(a+b+c)/3≧³√abc,a,b,c均为正数,当且仅当a=b=c时等号成立。

6.柯西不等式。

人教a版数学必修1需要几课时?

高中数学必修1按高中数学课程标准是36课时;《高中数学必修1》是2007年人民教育出版社出版的图书,作者是人民教育出版社课题材料研究所、中学数学课程教材研究开发中心

该书是高中数学学习阶段顺序必修的第一本教学***资料;《高中数学必修1》的知识点有***与函数的概念、基本初等函数、函数与方程。

必修一三角函数所有公式?

高一数学必修三角函数公式之两角和公式

sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

高一数学必修三角函数公式之和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

高一数学必修三角函数公式之半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

高一数学必修三角函数公式之倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

到此,以上就是小编对于高中数学必修一第6节的问题就介绍到这了,希望介绍关于高中数学必修一第6节的3点解答对大家有用。

查看更多有关于 的文章。

转载请注明出处:http://www.tivgjtz.cn/post/114661.html

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。
最新文章
热门文章
最近发表
友情链接