顶部右侧
顶部左侧
当前位置:首页 > 高中数学 > 正文

高中数学必修二注意点,高中数学必修二注意点是什么

bsmseo 发布于2024-04-18 16:35:16 高中数学 43 次

大家好,今天小编关注到一个比较有意思的话题,就是关于高中数学必修二注意点的问题,于是小编就整理了2个相关介绍高中数学必修二注意点的解答,让我们一起看看吧。

  1. 高一数学必修的人教A版与B版有什么区别?
  2. 数学二次函数怎样才能学好?

高一数学必修的人教A版与B版有什么区别?

1、A版、B版是分“地区”进行区分的,是地区相同是用一个版的教材。

高中数学必修二注意点,高中数学必修二注意点是什么
(图片来源网络,侵删)

2、B版比较难,主要是理科生使用,B版注重技巧和思维的锻炼,逻辑思维很强,因此难度要比A版大,有些题要经过缜密的思考才解出,较巧妙简洁。B版注重更贴合实际,题较为开放新颖。

3、A版、B版主编不同,最大的差别是在培养数学思维和数学能力上的不同,从而部分内容不同。

高中数学必修二注意点,高中数学必修二注意点是什么
(图片来源网络,侵删)

4、在类容的编排上稍有出入,这可能导致学的顺序稍有差别,每一章节的侧重点、详略不同;以下两个图片是高中数学新课程标准教材人教A、B版必修统计内容的比较研究。

数学二次函数怎样才能学好?

1、先认识二次函数的形式

高中数学必修二注意点,高中数学必修二注意点是什么
(图片来源网络,侵删)

概念:二次函数与二次函数的一般式
  • 从式子特征上理解,比如y=x²+x+1,y=2x²-3x+1,可以总结为形如y=ax²+bx+c(a≠0,且a,b,c都是常数)的式子,都是二次函数。这也是二次函数的一般式(次数从高往底写)。
  • 从概念上理解,“二次函数”中的“二次”指的是“自变量x的最高次数是2次”,“函数”指的是y是x的函数,y用含x的式子来表示。可以类比“一元二次方程”中的“一元”指的是一个未知数x,“二次”指的是x的最高次数。
  • 对比“一次函数”来理解。一次函数的一般式是y=kx+b(k≠0,且k,b是常数),二次函数正好是一次函数的升级,自变量次数升高了一次,就变成了二次了。所以二次函数一般式就写成y=ax²+bx+c(a≠0,a,b,c是常数),所以也把a叫做二次项系数,b叫做一次项系数,c常数项。

2、学会结合图象研究二次函数

2.1 y=ax²(a≠0)的图象性质

  • a>0开口向上,先减小后增大,有最小值;

  • a<0开口向下,先增大后减小,有最大值;

  • |a|越大,开口越小,|a|越小,开口越大;

  • 对称轴是y轴;

  • 顶点是原点

y=ax²+k(a≠0,a,k是常数)的图象性质

  • 顶点变成了(0,k)

2.3 y=a(x-h)²(a≠0,a,h是常数)的图象性质

  • 顶点变成(h,0)
  • 对称轴变成x=h

2.3 y=a(x-h)²+k(a≠0,a,h,k是常数)的图象性质

  • 顶点变成(h,k)
  • 对称轴变成x=h

3、找到二次函数的图象平移规律

3.1 y=ax²→y=ax²+k
  • 上下移动
  • k>0,向上移动k个单位
  • k<0,向下移动k个单位
  • 口诀“上加下减”
3.2 y=ax²→y=a(x-h)²
  • 左右移动
  • h>0,向右平移h个单位
  • h<0,向左平移了h个单位
  • 口诀 “加向左减向右,左加右减”
3.3 y=ax²→y=a(x-h)²+k
  • k决定上下平移
  • h决定左右平移
  • 顶点(0,0)→顶点(h,k)

4、自己要会画二次函数的大致图象

4.1 描点法4.2 五点作图法
  • 先确定开口方向
  • 再确定与y轴的交点
  • 再确定与x轴的两个交点x1和x2
  • 确定顶点式的顶点坐标(h,k)

5、二次函数的解析式的三种表示方式

5.1 一般式
  • 已知函数图象上任意三点
  • 设y=ax²+bx+c(a≠0,且a,b,c都是常数)
  • a,b同号,对称轴在左边;a,b异号,对称轴在右边。简称“同左,异右”
  • c是抛物线与y轴的交点
5.2 顶点式
  • 已知函数图象的顶点坐标和一个普通点
  • 设y=a(x-h)²+k(a≠0)
5.3 交点式(两根式,零点式)
  • 已知函数图象与x轴的两个交点和一个普通点
  • 设y=a(x-x1)(x-x2)(a≠0)

6、二次函数与一元二次方程的联系

  • 二次函数与x轴有两个交点,ax²+bx+c=0,△>0
  • 二次函数与x轴只有一个交点,ax²+bx+c=0,△=0
  • 二次函数与x轴没有交点,ax²+bx+c=0,△<0

二次函数是初中三年级数学,也是中考重难点,压轴题必考,所以二次函数从来都是重点。

如何去学习二次函数,我觉得要讲究一定的规律

二次函数考点无非是是二次函数的解析式,图像及性质,及二次函数与一次函数,反比例函数,及平面图形相结合的题目。

二次函数的解析式求法有1.待定系数法,只要找到函数图像上的三个点的坐标代入到函数解析式中,求出参数即可。2.顶点式,将函数顶点及与纵坐标的交点代入到解析式中即可求出系数3,两点式,二次函数与横坐标的交点是与之相关的一元二次方程的两个实数解。

二次函数的图像是一条抛物线,a决定的是抛物线开口方向,a>0时开口向上,a<0时开口向下,抛物线的对称轴是有a,b决定的,对称轴x=-b/2a,抛物线与纵坐标轴的纵坐标等于c.

二次函数图像的性质为当开口方向向上时,抛物线在对称轴的左边y随x的增大而减小,在对称轴的右侧y随x的增大而变大,当开口方向向下时,在对称轴的左边y随x的增大而增大,在对称轴的右边,y随x的增大而减小。

二次函数与一次函数的交点坐标为联立一次函数与二次函数的解析式求一元二次方程组的解。

二次函数我没记错的话应该是初三的知识,也是初中数学为数不多的难上手的地方,另一个陕西这边是圆的实际应用问题,其他省我不了解。

一开始学二次函数的时候我也感觉很难,各自图像需要去记忆,后来慢慢就好了,学二次函数首先要把基本式搞清楚,然后去把最值,图像的位置搞清楚,从基本上向哪里变化要分得清,其他的一些例如左同右异这些从题里摸索就好了。

我记得陕西二次函数一般在24题,二次函数考点一般是和一次函数结合在一起,求相似三角形,全等三角形,或者是给量算几个平行四边形,这些都要大量的练题才能做到正确率,速度跟得上。

我看了一下时间,现在已经是四月,应该是初三的末期,区市检测也应该考了,二次函数这个阶段,做题失误还是很正常的,需要适应。我一二检二次函数都没有拿到满分,问题出在了做题改错后没用去更深层的去理解,认为简单的改错做题多就行了。

对于我现在来看,二次函数还是初中简单的知识,难的只有圆的实际应用问题,哪里对逻辑推理以及思维变换运用非常高。希望你早日克服二次函数,相信自己。

学好二次函数,是初三特别重要的两个内容之一,另一个是三角形相似。

学好二次函数的方法,最重要的有如下几点:

首先,对教材中的知识点,要精熟。

比如:

一般式与顶点式的互化,尤其是一般式通过配方法得到顶点式,这里的配方法就要精熟。

从二次函数最简单形式,到最一般形式的平移变换。

y=ax²上下平移→y=ax²+c;

y=ax²左右平移→y=a(x-h)²;

y=ax²上下左右平移→y=a(x-h)²+k。

剩下的就是可以用一般式化为顶点式,加以完全解决了。

对其中的平移过程,以及图像的画法,以及由此得到的函数性质:

a>0时,开口向上,x<-b/2a时,y随x的增大而减小,x<-b/2a时,y随x的增大而增大,x=-b/2a时,y有最小值(4ac-b²)/4a

a<0时,开口向下,x<-b/2a时,y随x的增大而增大,x<-b/2a时,y随x的增大而减小,x=-b/2a时,y有最大值(4ac-b²)/4a

这些都是要精熟的内容。

精熟如上知识点,只是基础中的基础,还有许多内容,需要了解并掌握后,并加以熟练才有可能。

对二次函数的扩展知识点,也要心中有数,并了如指掌。

如何求二次函数解析式?通常是:

已知抛物线经过三点的三点式;

已知抛物线经过x轴两交点与另一个点的两点式;

已知抛物线的顶点和另一个点的顶点式(或者叫一点式)

已知抛物线解析式,我们能解决哪些问题?

这个问题的解决,才是学好二次函数问题的核心问题。

最起码的,有如下一些问题,需要解决:

1.面积问题;

2.有关角度问题,比如相等,直角,特殊角等。

3.特殊三角形,四边形问题

等等,这些问题特别繁杂,不过,都在各地的中考题里了。

剩下的,你也就需要刷中考题了。

到此,以上就是小编对于高中数学必修二注意点的问题就介绍到这了,希望介绍关于高中数学必修二注意点的2点解答对大家有用。

查看更多有关于 的文章。

转载请注明出处:http://www.tivgjtz.cn/post/76029.html

[免责声明]本文来源于网络,不代表本站立场,如转载内容涉及版权等问题,请联系邮箱:83115484@qq.com,我们会予以删除相关文章,保证您的权利。
最新文章
热门文章
最近发表
友情链接